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A NOTE ON THE STABILITY AND ACCURACY OF C*
FINITE ELEMENTS IN STEADY DIFFUSION-
CONVECTION PROBLEMS

NAOTAKA OKAMOTO* AND HIROSHI NIKI?
Okayama University of Science, Ridai-cho 11, Okayama 700, Japan

SUMMARY

The paper is concerned with stability and accuracy of an nth order Lagrangian family of finite element steady-
state solutions of the diffusion—convection equation, and furthermore is concerned with the stability and the
accuracy of on mth kind Hermitian family of finite element solutions. We discuss the stability of the numerical
solution based on the fact that the characteristic finite element solution can be expressed approximately as a
rational function of cell Peclet number Pe ( = uh/x). Moreover, it is shown that by eliminating derivatives and
by using the interpolation method over elements a stable solution is obtained over the domain independent of
Pe, for P2, and for P?® the stable solution is obtained for Pe, less than 44-4.

KEY worDs Diffusion-Convection Finite Element Method Hermite Interpolation Function Numerical
Analysis  Stability

1. INTRODUCTION

It is a well known fact that, when the finite element method is applied to diffusion—convection
problems, non-physical spatial oscillations occur when the velocity increases.!*? In order to avoid
these oscillations the upwind finite difference method (UPFDM) or the upwind finite element
method (UPFEM)? are proposed as numerical methods. Before using UPFEM, we had examined
the nth order Lagrangian family of finite elements: P®" (which belongs to class C°), so that it is
necessary to re-examine the effectiveness and a permitted limit of the standard Galerkin finite
element method (SGFEM).** In this paper, steady diffusion—convection problems are dealt with,
and then the stability and the accuracy of the FEM with nth order Lagrange polynomials (nth
order SGFEM) and the SGFEM with nth order Hermitian polynomials of the mth kind are
discussed. In Section 2 a canonical form of the mth kind nth order FE solution with the Hermite
polynomials is given for the 1-dimensional case. In Section 3 the stability of the FEM with the 3rd
order Hermite polynomials of the first kind: P*-3 (which belong to class C!) and the 5th order
Hermite polynomials of the second kind: P> (which belong to class C?) are discussed. In Section 4,
on the basic of these findings, it is shown that the stable region of the FE solution can be expanded
by eliminating the internal nodal value® provided that for the Lagrangian family of finite elements,
the exponential function is used as the finite element interpolation. On the other hand in the case of
the Hermitian family of finite elements it is shown that the stable region can be expanded by
eliminating the derivative at the node.
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The 1-dimensional model under consideration is
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Figure 1. Shape functions of a Hermitian family: (a) zeroth kind (m =0) (Lagrangian family), (b) first kind (m=1);
(c) second kind (m = 2)
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where k(> 0), u(> 0) and g are constants. The general solution of (1) is given by
¢(x) = Aexp (ux/x) + B + Qx, (3)
where A and B are arbitrary constants determined by equation (2) and Q = g/u.
The weighted-residual weak form for (1) is

J‘ (dW(x)/dx)(x dp(x)/dx)dx + f W(x)(ude(x)/dx)dx = j W(x)q dx. (4a)
Q o o

Here W(x) is the weighting function, satisfying W(x)=0on I'.
At each element the local interpolation function ¢°(x) and the local weighting function W¢(x)
are represented by the following matrix forms:

¢°(x) = {N}"{$}, (4b)
We(x) = {N}T. (4¢)
For example for P2, {N} and {4} take the following forms:
{a}T = {¢ia /i, 2’9 d)ja ¢;’ ¢;’}a (53)
{N}T = {P§:3(x), P1:7(x), P3(x), P33 (x), P13 (x), P35 (%)}, (5b)

where the superscript ' denotes differentiation.

Schematically these shape functions of the Hermitian family are shown in Figure 1.

For P%*, P'-3 and P%% at node k, the FEM equation with Hermite interpolation polynomials of
the mth kind has the form

(Cim 11 + Gl + Cier 1 8% 1) = O ©)

Mz

1

where (I) denotes the Ith derivative of the function and C} denotes coefficients which depend on the
clement length h and the cell Peclet number Pe_ = uh/«.

it

0

3. CHARACTERISTIC SOLUTION OF THE FEM EQUATION

By adding equations of two adjacent ¢lements and eliminating the derivative term of (¢), the
following canonical form is derived:

—a, 02 +(a, + b)) — b, ¢ = Qs (N
Here the coefficients a, = a,(Pe,), b, = b,(Pe,) are expressed by polynomials in the cell Peclet
number. For example, there is a 4th order polynomial for P13 and an 18th order polynomial for
P%3,
These results are listed in Table I. Here the characteristic solutions A, and A, are easily obtained
as

Al = bn(Pec)/an(Pec)a (Sa)
A, =1 (8b)

Therefore, the general solution of equation (7) is expressed as
¢k = Ah[bn(Pec)/an(Pec)]k + Bh + Qh' (9)

Comparing (3) with (9) the characteristic solution exp (uh/x) is approximated by A, in which both
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Table 1. Parameters g, and b,

an(Pe,) b,(Pe,)
po! 1—Pe/2 1+ Pe,2
po2 1— Pe,/2 + Pel/12 1+ Pe./2 + Pe?/12
PO [ —Pe 2+ Pe2/10— Pe3/120 | + Pe /2 + Pe/10 + Pe2/120
PO% 1 Pe/2+3Pel/28 — Pel/34 14 Pe,/2 + 3Pe2/28 + Pe?/34
+ Pe*/1680 1 + Pe*/1680
p 1 — Pe /2 + Pe/9 — TPe3/540 + Pe?/900 1 4+ Pe /2 + Pe2/9 +7Pe3/540 + Pe*/900
p2:s 1 — (Pe,/2) + 2327(Pe,/2)%/2700 1+ (Pe,/2) + 2327(Pe,/2)2/2700
— 1427(Pe,/2)/2700 + 1427(Pe,/2)*/2700
+69,931(Pe_/2)*/255,150 +69,931(Pe_/2)*/255,150
— 43,771(Pe,/2)* /364,500 +43,771(Pe,/2)° /364,500
+ 1,201,669(Pe, /2)° /26,244,000 + 1,201,669(Pe,/2)° /26,244,000
— 80,489(Pe,/2)7/5,248.800 +80,489(Pe./2)7/5,248 800
+109,050,511(Pe, /2)% /23,808,556,800 +109,050,511(Pe, /2)* /23,808,556,800
— 820,877(Pe, /2)° /680,244,480 +820,877(Pe,/2)° /680,244,480
+ 176,963(Pe_/2)!°/29,386,561,536 + 176,963(Pe, /2)1°/29,386,561,536
— 13,009,769(Pe./2)'1/11,108,120,260,608 + 13,009,769(Pe,/2)'1/11,108,120,260,608
+298.265(Pe,/2)'2/1,586,874,322,944 +298.265(Pe,/2)12/1,586,874,322,.944
—2,930,975(Pe, /2)1/99.973,082,345,472 +2,939,975(Pe, /2)13/99.973,082,345 472
+24,565(Pe,/2)"*/7,140,934,453,248 +24,565(Pe./2)'4/7,140,934,453,248
—250,895(Pe, /2)!5/599,838,494,072,832 +250,805(Pe, /2)1 /599,838 494,072,832
+2675(Pe,/2)16/85,691,213,438.976 +2675(Pe,/2)1/85,691,213,438 976
— 1325(Pe,/2)'7/514,147,280,633,856 +1325(Pe,/2)'7/514,147,280,633,856
+ 125(Pe,/2)#/1,542,441,841,901,568 + 125(Pe,/2)8/1,542,441,841,901,568
Pe_ = uh/x
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Figure 2. Characteristic solution to equation (7)
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Figure 3. Characteristic solution to equation (7)

numerator and denominator have same order rational function. By examining A; we find the
characteristics of the FE solution with the Hermitian family of finite elements.

Note that in the case of the Lagrangian family of finite elements (m = 0) each nodal value is
expressed by a rational function (Table I) but for the Hermitian family of finite elements the nodal
value is not completely equivalent to one so that a derivative at each node is associated with the
function’s value.

Now the stability for the general solution ¢, is assured only if A; =b,/a, >0, since A, = 1.
However, the property of A, varies with n, as shown in Figure 2. In the case of the Hermitian
family of finite elements (P* in Figure 2), as in the even-order Lagrangian family of finite elements
(P%?in Figure 2), A, is positive for all Pe( > 0), and ¢, is unconditionally stable. However, A has
an extreme value at Pe = 4-367. Also A, approaches unity as Pe,— oo, and then the linear
independence of the fundamental solutions A,, and A, is gradually violated. Accordingly a non-
physical solution appears. As shown in Figure 3, there exists an extreme value for P, 5 at
Pe, = 61178, and at Pe, = 44-4 A, diverges to + o0, and then A; has a negative value when the
value of Pe_, exceeds 44-4. Accordingly the stable solution is not obtained. In the above
discussion the Dirichlet boundary condition (2) plays an important role. If we use the Neumann
condition ¢'(h) = Q instead of ¢(b)=d, 4= A, is equal to 0, and then the oscillation does
not occur. It is considered that the actual physical model exists between these two conditions.

4. NUMERICAL RESULTS

We show numerical results for equation (1) with ¢(0) = 1 and ¢(1) = 0, where the element length
h =01, the number of elements N = 10 and x = 1.

We now discuss ¢, at node k. As shown in Figure 4 the non-physical oscillation is obtained
as the cell Peclet number is increased for P?:%, But for P** the oscillation is not obtained. As
shown in Figure 5 when the cell Peclet number increases, the value of the FE solution decreases
all over the domain even for P! and the non-physical solution is obtained. Namely, at the first
node of an entrance the value of the derivative becomes larger than the value at the second
node. This result is extremely interesting in that it differs from the result in the case of the
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Figure 4. Solution of diffusion—convection equation with Hermitian polynomials P!3, p%°
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Figure 5. Solution of diffusion—convection equation with Hermitian polynomial P!-3

even-order Lagrangian family of finite elements; when the value of Pe, is great than that of Pe,
in the consistent domain (see that Appendix), the FE solution approaches a solution ¢(=1 — x)
in the case u = 0 of equation (1). In the case of the non-oscillation the relative error at the point
x =09, which is a conceivable occurrence of the maximum error, is shown in Figure 6. These
results can also be understood from the characteristic solution.

Next, we examine derivatives ¢y, ¢y at each node. The errors of derivatives at the exist (x = 1-0)
are shown in Figure 7. In the case of Pe, = 1-9 the gradient error of P%! is — 48-7 per cent, on the
other hand the gradient errors of P!-* and P%° are — 2-78 per cent and — 0-0450 per cent,
respectively: the higher accuracy is obtained for the small cell Peclet number. Now so for as we
observe only the derivative at each node for P*-3, the oscillations do not occur when Pe_ is less than
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Figure 7. Relative error of derivative
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10-5. However, as shown in Figure 8. The oscillations occur over every element for Pe, larger than
1-68, and so these values do not have a physical meaning. The above results are listed in Table I1.

We now discuss the errors. The behaviours of the maximum errors of ¢, for P!, P!3 and P*°
are shown in Figure 9. For sufficiently small u the order of the convergence for k is almost constant,
and even using the maximum norms at the nodes the order of the convergence is almost same as for
the 2-norm under the basic elliptic condition.®
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Figure 8. Solution of diffusion—convection equation with Hermitian polynomials P*:3, p23
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Figure 9. Accuracy on PO!, p1:3 p23
If we consider the nodal value, the accuracy of the FE solution for P, , is almost independent of

u, but the accuracies of the FE solutions for P, ; and P, s decrease with increasing u. The
accuracies of ¢, ¢, and ¢y are listed in Table ITL

5. THE STABLE ALGORITHM

For the even-order Lagrangian family of finite elements, by eliminating the internal nodal value
and by the use of a functional interpolation method a stable solution is obtained. In the case
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Figure 10. Exponentially interpolated solution

of the Hermitian family of finite elements by eliminating the derivative at each node the stable
domain can be extended. For P!-® the stable calculation can be performed for every Pe, in the
same way as for the Lagrange even-order elements. On the other hand for P2 the stable
calculation can be performed up to Pe, = 44-4. These results are shown in Figure 10.

6. CONCLUSION

The stability and accuracy of the Hermite-type FEM for steady diffusion—-convection problems
have been theoretically and numerically discussed. We clarified the bound and the effectiveness of
the Hermitian family of finite element based on the fact that the characteristic solution of the FE
equation is approximated by a rational function of Pe..

Summarizing our results, they are as follows:

1. By the use of the first kind third order Hermitian family of finite elements: P!:3, there is
obtained a non-oscillating stable FE solution for the nodal value.

2. For the second kind 5th order Hermitian family of finite elements: P>> the stable solution is
not obtained.

3. For large Pe, the derivative does not have a physical meaning because oscillation of the
solution over an element occurs. For Pe, less than 1-68 the solution for P! and for Pe, less
than 2:03 the solution for P?® does not oscillate, so that solutions with high accuracy are
obtained.

4. For sufficiently small u the accuracy of the FEM solution with Hermitian polynomials has
order n+ 1, but its accuracy decreases as u increases.

5. For the proposed technique, which is eliminating the derivative at each node and using the
exponential function’s interpolation method over each element, the stable solutions are
obtained over the domain independently of Pe, and for P?'° the stable solutions are obtained
for Pe, less than 44-4.
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Figure 11. Solution of diffusion—convection equation with quadratic Lagrangian polynomial. (Case of two elements)
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APPENDIX. THE CONSISTENT DOMAIN*®

In the case of the odd-order Lagrangian family of finite elements we defined the consistent
domain as extending from O until the singular point of A; = b,(Pe_)/a,(Pe.). On the other hand
for the even-order element it is defined by

Pe, < flc)=204+ 14(n—1)

where n is an even number. For the second order element (/12 in correct), as shown in Figure 11,
the gradient of among every elements (including internal points) has monotonicity as following
relation:

(@i~ di 1| <Iiry — il
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