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A NOTE ON THE STABILITY AND ACCURACY OF c" 

CONVECTION PROBLEMS 
FINITE ELEMENTS IN STEADY DIFFUSION- 

NAOTAKA OKAMOTO* AND HIROSHI NIKI' 

Okayama University of Science, Ridai-cho 1-1, Okayama 700, Japan 

SUMMARY 

The paper is concerned with stability and accuracy of an nth order Lagrangian family offinite element steady- 
state solutions of the diffusion-convection equation, and furthermore is concerned with the stability and the 
accuracy of on mth kind Hermitian family of finite element solutions. We discuss the stability of the numerical 
solution based on the fact that the characteristic finite element solution can be expressed approximately as a 
rational function of cell Peclet number Pe,( = uh/lc). Moreover, it is shown that by eliminating derivatives and 
by using the interpolation method over elements a stable solution is obtained over the domain independent of 
Pe, for P1.3, and for P2*5 the stable solution is obtained for Pe, less than 44.4. 

KEY WORDS Diffusion-Convection Finite Element Method Hermite Interpolation Function Numerical 
Analysis Stability 

1. INTRODUCTION 

It is a well known fact that, when the finite element method is applied to diffusion-convection 
problems, non-physical spatial oscillations occur when the velocity increases. 1,2  In order to avoid 
these oscillations the upwind finite difference method (UPFDM) or the upwind finite element 
method (UPFEM)3 are proposed as numerical methods. Before using UPFEM, we had examined 
the nth order Lagrangian family of finite elements: POsn (which belongs to class Co), so that it is 
necessary to re-examine the effectiveness and a permitted limit of the standard Galerkin finite 
element method (SGFEM).4.5 In this paper, steady diffusion-convection problems are dealt with, 
and then the stability and the accuracy of the FEM with nth order Lagrange polynomials (nth 
order SGFEM) and the SGFEM with nth order Hermitian polynomials of the mth kind are 
discussed. In Section 2 a canonical form of the mth kind nth order FE solution with the Hermite 
polynomials is given for the l-dimensional case. In Section 3 the stability of the FEM with the 3rd 
order Hermite polynomials of the first kind: P1*3 (which belong to class Cl) and the 5th order 
Hermite polynomials of the second kind: P2*5 (which belong to class C 2 )  are discussed. In Section 4, 
on the basic of these findings, it is shown that the stable region of the FE solution can be expanded 
by eliminating the internal nodal value6 provided that for the Lagrangian family of finite elements, 
the exponential function is used as the finite element interpolation. On the other hand in the case of 
the Hermitian family of finite elements it is shown that the stable region can be expanded by 
eliminating the derivative at the node. 
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2. BASIC EQUATIONS 

The 1-dimensional model under consideration is 

1.0 

0.0 

C 

1.0 

0 . 0  

I 0 . 0  

0.0  1.0 

(c) 
Figure 1. Shape functions of a Hermitian family: (a) zeroth kind (m = 0) (Lagrangian family); (b) first kind (rn = 1); 

(c) second kind (m = 2) 
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where K (  > 0), u( > 0) and 4 are constants. The general solution of (1) is given by 

+(x) = A exp (UX/K) + B + Q x ,  (3) 
where A and B are arbitrary constants determined by equation (2)  and Q = q/u. 

The weighted-residual weak form for (1) is 

jQ(dW(x)/dx)(K d+(x)/dx) dx + W(x)(u d+(x)/dx) dx = W(x)q dx. jQ j* (44 

Here W(x)  is the weighting function, satisfying W(x) = 0 on r. 

are represented by the following matrix forms: 
At each element the local interpolation function +“(x) and the local weighting function We(x) 

+“b) = (N>T(61> (4b) 

W”(x) = { N I T .  (44 

(54 

(5b) 

For example for P2,5,  { N )  and (6) take the following forms: 

{(a>’ = (+i, +L +i> +j> +st +;>t 

(NIT = (Pi?:5(x), P;:5(4> P::m, Pi?:+), P;: ;w ,  P::j”(x)>, 
where the superscript ’ denotes differentiation. 

Schematically these shape functions of the Hermitian family are shown in Figure 1. 
For Po,’, and P2,’ at node k, the FEM equation with Hermite interpolation polynomials of 

the mth kind has the form 

where ( 1 )  denotes the lth derivative of the function and C: denotes coefficients which depend on the 
element length h and the cell Peclet number Pee = uh/rc. 

3. CHARACTERISTIC SOLUTION O F  THE FEM EQUATION 

By adding equations of two adjacent elements and eliminating the derivative term of (+), the 
following canonical form is derived: 

- u,+L’.! 1 + (a, + b,)+Lo’ - b,,+L!) 1 = Q k .  (7) 
Here the coefficients a, = a,(Pe,), b, = b,(Pe,) are expressed by polynomials in the cell Peclet 
number. For example, there is a 4th order polynomial for Pis3 and an 18th order polynomial for 

These results are listed in Table I. Here the characteristic solutions A, and A2 are easily obtained 
p2,5 

as 

Therefore, the general solution of equation (7) is expressed as 

4 k  = AhCb,(Pe~) /a , (Pe~) l~  f B h  + Q h .  (9) 
Comparing (3) with (9) the characteristic solution exp ( u h / ~ )  is approximated by A, in which both 
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Table 1. Parameters an and bn 

Po,' 1 - Pec/2 
Po.' 
Po,3 
POs4 

p1.3 

P'.5 

I - PeJ2 + PeE/ 12 
1 - Pec/2 + Pe,2/IO - Pe,3/12O 
1 - PeJ2 + 3Pe;/28 - Pe2/84 
+ Pe:/1680 
1 - Pec/2 + Pef/9 - 7Pe,3/540 + Pe:/900 
1 - (Pe,/2) + 2327(PeC/2)'/27OO 
- 1427(Pec/2)3/2700 
+ 69,93 1(Pec/2)4/255,150 
- 43,77 1 (Pec/2)5/364,500 
+ 1,201 ,669(Pec/2)6/26,244,000 
- 8O,489(Pec/2)'/5,248,80O 
+ 109,050,51 l(Pec/2)*/23,808,556,800 
- 820,877(PeC/2)'/680,244,480 
+ 1 76,963(PeC/2)"/29,386,56l,536 
- 1 3,009,769(Pec/2)' '11 1,108,120,260,608 
+ 298,265(Pe,/2)'2/1,586,874,322,944 
- 2,939,975(Pec/2)' 3/99,973,082,345,472 
+ 24,565(Pe,/2)'4/7,140,934,453,248 
- 250,895(PeC/2)' 5/599,838,494,072,832 
+ 2675(Pec/2)'6/85,691,21 3,438,976 
- 1325(Pec/2)' '/514,147,280,633,856 
+ 1 25(PeC/2)'*/ 1,542,441,841,901,568 

1 + PeJ2 
1 + Pec/2 + Pe,2/12 
1 + Pec/2 + Pe,2/1O + Pe,3/12O 
1 + Pe,/2 + 3Pef/28 + Pel/S4 
1 + Pe:/l680 
1 + Pec/2 + Pe,2/9 + 7Pe,3 1540 + Pe:/9OO 
1 + (Pec/2) + 2327(Pec/2)2/2700 
+ 1427(Pe,/2)3/2700 
+ 69,93 l(Pec/2)4/255,1 50 
+ 43,771(Pec/2)5/364,500 
+ 1,20 1 ,669(Pe,/2)6/26,244,000 
+ 80,489(Pec/2)7/5,248,800 
+ 109,050,5 1 1 (PeC/2)*/23,8O8,556,8OO 
+ 820,877(PeC/2)'/680,244,480 
+ 1 76,963(Pe,/2)'0/29,386,561,536 
+ 1 3,009,769(Pec/2)' '11 1,108,120,260,608 
+ 298,265(PeC/2)' '/1,586,874,322,944 
+ 2,939,975(Pec/2)' 3/99,973,082,345,472 
+ 24,565(Pe,/2)'4/7,140,934,453,248 
+ 250,895(PeC/2)' 5/599,838,494,072,832 
+ 2675(Pec/2)16/85,691,21 3,438,976 
+ 1 325(PeC/2)' 7/5 14,147,280,633,856 
+ 1 25(Pec/2)' */  1,542,44484 1,901,568 
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0 2 4 6 8 10 

Pec 
Figure 2. Characteristic solution to equation (7) 
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Figure 3. Characteristic solution to equation (7) 

numerator and denominator have same order rational function. By examining A, we find the 
characteristics of the FE solution with the Hermitian family of finite elements. 

Note that in the case of the Lagrangian family of finite elements (rn = 0) each nodal value is 
expressed by a rational function (Table I) but for the Hermitian family of finite elements the nodal 
value is not completely equivalent to one so that a derivative at each node is associated with the 
function's value. 

Now the stability for the general solution g i k  is assured only if A, = b,/a, > 0, since A, = 1. 
However, the property of A1 varies with n, as shown in Figure 2. In the case of the Hermitian 
family of finite elements in Figure 2), as in the even-order Lagrangian family of finite elements 
(Po+2 in Figure 2), A, is positive for all Pe,( 2 O), and $k is unconditionally stable. However, A, has 
an extreme value at Pe, = 4,367. Also A, approaches unity as Pe,+ 00, and then the linear 
independence of the fundamental solutions A,, and A2 is gradually violated. Accordingly a non- 
physical solution appears. As shown in Figure 3, there exists an extreme value for P2,5 at 
Pe, = 6 1  178, and at Pe, = 444 A, diverges to + co, and then A, has a negative value when the 
value of Pe, exceeds 44.4. Accordingly the stable solution is not obtained. In the above 
discussion the Dirichlet boundary condition (2) plays an important role. If we use the Neumann 
condition $'(b)=Q instead of gi(b)=d,  A = A ,  is equal to 0, and then the oscillation does 
not occur. It is considered that the actual physical model exists between these two conditions. 

4. NUMERICAL RESULTS 

We show numerical results for equation ( 1 )  with gi(0) = 1 and gi(1) = 0, where the element length 
h = 0.1, the number of elements N = 10 and K = 1. 

We now discuss $k at node k. As shown in Figure 4 the non-physical oscillation is obtained 
as the cell Peclet number is increased for P2,5. But for the oscillation is not obtained. As 
shown in Figure 5 when the cell Peclet number increases, the value of the FE solution decreases 
all over the domain even for and the non-physical solution is obtained. Namely, at the first 
node of an entrance the value of the derivative becomes larger than the value at the second 
node. This result is extremely interesting in that it differs from the result in the case of the 
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. A A I A A I A  

A A A A A A A A A  

Pe,=10.5 
0 Pe,=40 

- A Pe, =lo0 
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I I I I * 
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I 

0 1.0 

x c - I  
Figure 4. Solution of diffusion-convection equation with Hermitian polynomials PZ*’ 

1.0 ........ I . 

even-order Lagrangian family of finite elements; when the value of Pee is great than that of Pee 
in the consistent domain (see that Appendix), the FE solution approaches a solution $( = 1 - x) 
in the case u = 0 of equation (1).  In the case of the non-oscillation the relative error at the point 
x = 0.9, which is a conceivable occurrence of the maximum error, is shown in Figure 6. These 
results can also be understood from the characteristic solution. 

Next, we examine derivatives $;, 4; at each node. The errors of derivatives at the exist (x = 1.0) 
are shown in Figure 7. In the case of Pee = 1.9 the gradient error of Po+’ is - 48.7 per cent, on the 
other hand the gradient errors of and P2,’ are - 2-78 per cent and - 00450 per cent, 
respectively: the higher accuracy is obtained for the small cell Peclet number. Now so for as we 
observe only the derivative at each node for the oscillations do not occur when Pe, is less than 
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Figure 6. Relative error 
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Figure 7. Relative error of derivative 

10.5. However, as shown in Figure 8. The oscillations occur over every element for Pe, larger than 
1.68, and so these values do not have a physical meaning. The above results are listed in Table 11. 

We now discuss the errors. The behaviours of the maximum errors of 4k for PO,', P'.j a nd P2x5 
are shown in Figure 9. For sufficiently small u the order of the convergence for h is almost constant, 
and even using the maximum norms at the nodes the order of the convergence is almost same as for 
the 2-norm under the basic elliptic condition.* 
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Pe, = 10 I- 
--o- p'*3 - t  I 

0 1.0 

x c- I  
Figure 8. Solution of diffusion-convection equation with Hermitian polynomials P1,3, PZs5 
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Figure 9. Accuracy on Po,', P1.3, P2*' 

I f  we consider the nodal value, the accuracy of the FE solution for Po,l is almost independent of 
and P2,5  decrease with increasing u. The u, but the accuracies of the FE solutions for 

accuracies of 4k, 4; and 4; are listed in Table 111. 

5. THE STABLE ALGORITHM 

For the even-order Lagrangian family of finite elements, by eliminating the internal nodal value 
and by the use of a functional interpolation method a stable solution is obtained. In the case 
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1.0 
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le 
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x c - I  
Figure 10. Exponentially interpolated solution 

of the Hermitian family of finite elements by eliminating the derivative at each node the stable 
domain can be extended. For the stable calculation can be performed for every Pee in the 
same way as for the Lagrange even-order elements. On the other hand for P2,5 the stable 
calculation can be performed up to Pee = 44.4. These results are shown in Figure 10. 

6. CONCLUSION 

The stability and accuracy of the Hermite-type FEM for steady diffusion-convection problems 
have been theoretically and numerically discussed. We clarified the bound and the effectiveness of 
the Hermitian family of finite element based on the fact that the characteristic solution of the FE 
equation is approximated by a rational function of Pee. 

Summarizing our results, they are as follows: 
1. 

2. 

3. 

4. 

5. 

By the use of the first kind third order Hermitian family of finite elements: P I s 3 ,  there is 
obtained a non-oscillating stable FE solution for the nodal value. 
For the second kind 5th order Hermitian family of finite elements: P Z r S  the stable solution is 
not obtained. 
For large Pe,  the derivative does not have a physical meaning because oscillation of the 
solution over an element occurs. For Pe, less than 1.68 the solution for and for Pe, less 
than 2.03 the solution for P2,5 does not oscillate, so that solutions with high accuracy are 
obtained. 
For sufficiently small u the accuracy of the FEM solution with Hermitian polynomials has 
order n + I, but its accuracy decreases as u increases. 
For the proposed technique, which is eliminating the derivative at each node and using the 
exponential function's interpolation method over each element, the stable solutions are 
obtained over the domain independently of Pe, and for P2*' the stable solutions are obtained 
for Pe,  less than 44.4. 
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APPENDIX. THE CONSISTENT DOMAIN4,6 

In the case of the odd-order Lagrangian family of finite elements we defined the consistent 
domain as extending from 0 until the singular point of A, = b,(Pe,)/a,(Pe,). On the other hand 
for the even-order element it is defined by 

Pe ,  < f ( c )  = 2.0 + 1.4(n - 1) 

where y1 is an even number. For the second order element (@ in correct), as shown in Figure 11, 
the gradient of among every elements (including internal points) has monotonicity as following 
relation: 
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